
The Supervised Learning No-Free-Lunch Theorems

David H. Wolpert

MS 269-1

NASA Ames Research Center

Mo�ett Field, CA 94035

dhw@ptolemy.arc.nasa.gov

http://ic.arc.nasa.gov/ic/projects/bayes-group/people/dhw/

June 22, 2001

Abstract

This paper reviews the supervised learning versions of the no-free-lunch

theorems in a simpli�ed form. It also discusses the signi�cance of those

theorems, and their relation to other aspects of supervised learning.

1 Introduction

1.1 O�-Training-Set Error

Many introductory supervised learning texts take the view that \the overall

objective: : :is to learn from samples and to generalize to new, as yet unseen cases"

(italics mine|see [7] for example). Similarly, it is common practice to try to avoid

�tting the training set exactly, i.e., to try to avoid \overtraining." One of the

major rationales given for this is that if one overtrains, \the resulting (system) is

unlikely to classify additional points (in the input space) correctly" (italics mine|

see [2]).

Such language implies|correctly|that one of the major topics of interest in

supervised learning is behavior o� the training set. There are many reasons for

concerning oneself with such behavior:

i) In the low-noise regime, optimal behavior on the training set is determined by

1

look-up table memorization, and the only interesting issues concern o�-training-

set behavior.

ii) In particular, in that low-noise regime, if one uses a memorizing learning algo-

rithm, then for test sets overlapping with training sets the upper bound on test

set error shrinks as m, the size of the training set, grows. If one does not correct

for this when comparing behavior at di�erent m values (as when investigating

learning curves), one is comparing apples and oranges. When there is no noise,

correcting for this e�ect by renormalizing the range of possible errors is equivalent

to requiring that test sets and training sets be distinct. (See below.)

iii) In arti�cial intelligence|one of the primary �elds concerned with supervised

learning|the emphasis is often exclusively on generalizing to as-yet-unseen ex-

amples.

iv) Very often the stochastic process generating the training set is not the same

as that governing testing. In such scenarios, the usual justi�cation for testing

with the same process that generated the training set (and with it the necessity

that test sets are allowed to overlap with training sets) does not apply. An exam-

ple is provided in the problem of protein tertiary structure prediction. Say that

to do drug design we wish to use supervised learning to ascertain the mapping

taking protein primary structure to the corresponding tertiary structure (i.e., the

mapping from the protein's amino acid sequence to its three-dimensional confor-

mation). In doing this we already know what tertiary structure corresponds to the

primary structures in the training set. So to do design of new drugs we will never

have those structures in the \test set" (i.e., in the set of amino acid sequences

whose tertiary structure we wish to predict by using the training data). So we

will only be interested in o�-training-set error.

iv) Distinguishing the regime where test examples coincide with the training set

from the one where there is no overlap amounts to splitting supervised learning

along its natural \cleavage plane." Since behavior can be radically di�erent in the

two regimes, it is hard to see why one would not want to distinguish them.

v) There is a popular heuristic argument that the value of error when test sets are

generated by the same process that generated training sets must become identical

to o�-training-set testing error when the size of the input space grows very large.

If true, this would mean that one can ignore the distinction between the two kinds

of error. However, this heuristic is often wrong. See, for example, the discussion

on the \statistical physics supervised learning framework" in [11].

None of this means that one should never allow test sets to overlap with train-

ing sets. Rather it means that o�-training-set testing is an issue of major impor-

2

tance which warrants scrutiny. However, the common mathematical frameworks

for analyzing supervised learning | standard Bayesian analysis, sampling theory

statistics, and the various computational learning theory approaches| all require

that the test set be allowed to overlap with the training set. (They do this by hav-

ing testing governed by an independent identically distributed (IID) rerunning of

the process that generated the training set. See [11].) Therefore they mix together

behavior on already-seen examples with that for not-already-seen examples, and

accordingly cannot distinguish the two kinds of behavior.

The primary reason that the conventional frameworks allow the test set to

overlap with the training set is that much of their research has been driven by the

mathematical tools their practitioners are well-versed in rather than by considera-

tion of what the most important issues in supervised learning are. Unfortunately,

those tools are ill-suited for investigating o�-training-set behavior. In fact, often

the four frameworks use language that implies that their goal is understanding

o�-training-set behavior, even when they use a test set that can overlap with the

training set. For example, in a paper by Blumer et al.,[4] in the context of noise-

free supervised learning, we read that \the real value of a scienti�c explanation lies

not in its ability to explain [what one has already seen], but in predicting events

that have yet to occur," despite the fact that the subsequent analysis allows test

sets to overlap with training sets.

This re
ects the fact that the conventional frameworks are, to a degree, appli-

cations to supervised learning of paradigms developed for di�erent �elds. As such,

they carry with them the entire cultural baggage|implicit assumptions and all|

of the �elds in which they originated. Such assumptions tend to be \background"

in those originating �elds, so it is natural that they are also background|though

perhaps no longer so innocuous|when practitioners of those �elds cross over to

supervised learning.1 Clearly then to investigate the crucially important topic of

o�-training-set error we need a di�erent framework.

1As an aside, this tool-driven approach to theoretical learning has applied learning analogues.

An important example is the manipulation of parametrizations of an object of interest with

little concern for how those manipulations a�ect the object of interest itself. For example,

many researchers impose priors on neural net weights, implement a bias in favor of fewer hidden

neurons, etc. Often, for lack of an alternative, they do this without taking into account the

ultimate e�ect on the direct object of interest, the input-output functions parametrized by those

weights [10, 6]. One advantage of the framework presented below is that it is nonparametric and,

therefore, helps focus attention directly on the object of interest rather than on parametrizations

of that object.

3

1.2 Overview

In Section 2 of this paper I present a framework capable of addressing o�-training-

set error, the \Extended Bayesian Framework" (EBF | [9, 10, 14]). This

framework has the other major advantage that it encompasses the conventional

frameworks, illustrating the subtleties of how they are related, and suggesting

variants of them. In Section 3 I present the \no-free-lunch theorems" based on

the EBF. These are theorems that bound how much one can infer concerning

the (o�-training-set) generalization error probability distribution without making

relatively strong assumptions concerning the real world. They serve as a broad

context in which one should view the claims of any supervised learning framework.

2 The Extended Bayesian Formalism

2.1 Introduction

Intuitively, the EBF is just the conventional Bayesian supervised learning frame-

work, extended to add one extra random variable. In addition to \costs" or

\generalization errors" c, and \target" input-output relationships f , from which

are produced m-element \training sets" d, there are also hypotheses h. These are

the outputs of one's learning algorithm, made in response to d. (Loosely speaking,

h can be viewed as the algorithm's guess for f .) The EBF[9, 10] is conventional

probability theory applied to the space of quadruples fh; f; d; cg.

It is the inclusion of h in the space that allows the EBF to go beyond the

conventional Bayesian supervised learning framework; without h, the EBF could

not encompass the non-Bayesian frameworks like computational learning theory

(e.g., PAC and the VC framework) and sampling theory statistics (e.g., con�-

dence intervals). (See [13] for an overview of those frameworks.) To understand

this, note that one's learning algorithm (or \generalizer") is given by the condi-

tional probability distribution P (hjd). There is no direct analogue to P (hjd) in

the conventional Bayesian framework. In particular, the \likelihood function" of

the Bayesian framework, which gives the data generation process, is P (djf); the

\posterior distribution" referred to in that framework usually means P (f jd); and

the \prior" referred to in that framework usually means P (f). (More generally,

the terms \prior" and \posterior" mean not-conditioned and data-conditioned, re-

spectively.) Viewed another way, the conventional Bayesian framework has P (hjd)

pre-�xed, to be the \Bayes-optimal" P (hjd) associated with P (f jd) (see Section

5 of [13] and references therein). No allowance is made for P (hjd)'s like those

4

considered in the other frameworks (and found in the real world) that are not

Bayes-optimal for any P (f jd).

The EBF itself imposes no restrictions on h and f ; all such restrictions are

imposed by P (f; h; d; c). For example, if one's algorithm always makes guesses

lying in a class H, then P (h) = 0 for all h 62 H. Similarly, if that the truths come

from some class F , then P (f) = 0 for all f =2 F . If instead one's learning algorithm

merely assumes that, and accordingly never makes a guess in F , then this means

that P (h) = 0 for h =2 F:P (hjd) can be \deterministic"|i.e., always guess the

same h for the same d (as in a nearest neighbor algorithm)|or \stochastic"|i.e.,

potentially guess di�erent h's even when d is �xed (as in backpropagation with a

random initial weight).

The rest of this section presents a formal de�nition of the EBF. Those whose

eyes turn glassy at such formal text are encouraged to skip to Section 3, referring

back to the synopsis at the end of this section as needed.

2.2 De�nition of the EBF

This subsection synopsizes the EBF; see [14] for a fully formal exposition.

� In this paper, random variables are denoted by capital letters, and instances

of random variable with corresponding lower-case letters. For the purposes of this

paper, there is no reason to be concerned with quasi-philosophical distinctions

between random variables and \parameters." (See the discussion in Wolpert[15]

on prior information.)

Whenever possible, \P" notation will be used: the arguments of a \P" indicates

if it is a probability or a density or a mixture of the two and, if it involves densities,

what random variables they are over. When more precision is required, \Pr(A)"

will be used to indicate the probability of the event A, and lowercase \p" will be

used to indicate a probability density. (So P (z) = pZ(z) is the probability density

of random variable Z, evaluated at value z.) The notation \E(Zja)" is de�ned

to mean the expectation value E(ZjA = a) =
R
dz z P (zja) (the integral being

replaced by a sum if that is appropriate).

� The input space X has n elements, and the output space Y has r elements,

where both n and r are countable (though perhaps in�nite). Such discreteness of

the spaces does not amount to an undue restriction, since it always holds in the

real world, where measuring devices have �nite precision and where the computers

used to emulate learning algorithms are �nite state machines. (Note also that our

training and test sets will always be �nite, and often we can restrict X to be just

the input space values found in those sets.)

5

� The training set d consists of m ordered pairs of inputs and output values,

fdX(i); dY (i)g : 1 � i � m. The number of distinct values in dX is indicated by

m0.

� Let \f" be a function giving the probability of y 2 Y conditioned on

x 2 X. This is indicated by writing P (yjx; f) = fx;y. (Note that f is a vector of

real numbers, with components fx;y.) When extra precision is required, \F" will

indicate the random variable of which \f" is an instantiation. So, for example,

pY jX;F (yjx; f) = fx;y.

The variable \f" labels the \true" or \target" conditional distribution of y

given x, in that training set output values are generated according to f . For the

purposes of this paper, this means that P (dY jdX ; f) = �m
i=1fd

X(i) ;dY (i)
, where dX

and dY are the inputs and outputs of the training set d. (Note that this equation

need not �x anything concerning test set generation.)

� Let \g" be a function giving the probability of x 2 X. This is in-

dicated by writing P (xjg) = gx. (Note that g is a vector of real numbers,

with components gx.) Training set input values are generated according to g:

P (dXjg) = �igd
X

(i)
. (This means that repeats are allowed in dX .) In this paper it

is stipulated that P (djf; g) (which equals P (dY jdX; f; g)P (dXjf; g)) is equivalent

to P (dY jdX ; f)P (dXjg). This can be viewed as part of the de�nition of f and g.

In addition to such de�nitional requirements, here it will be convenient if certain

other properties of g are assumed. In particular, it is assumed that g and f are

statistically independent. This means that

P (djf) =
R
dgP (djf; g)P (gjf) =

Z
dgP (djf; g)P (g)

= P (dY jdX; f)
R
dgP (dXjg)P (g) = P (dY jdX ; f)

Z
dg [�igd

X
(i)
P (g)]:

It is also assumed that P (g) is a delta function about some \sampling" distribu-

tion �(x). Taken together these assumptions mean that P (djf) = �i[�(dX(i))fdX(i);dY (i)].

For current purposes, this means that the variable g can henceforth be ignored.

Note that these assumptions concerning g are often unrealistic. Usually there is

some coupling between f and g, and sometimes there is a lot. (This is the case in

the drug design problem outlined above, for example.) Moreover, any techniques

that try to use unsupervised learning to aid supervised learning (e.g., decision-

directed learning [3]) implicitly assume that g and f are coupled. However, the

vast majority of the work in the conventional frameworks implicitly assumes that

g and f are independent. That is why that assumption is adopted here.2

� The fact that they themselves parameterize distributions does not forbid

2See Wolpert[8] for a discussion of the rami�cations of the assumption that g is independent

6

either f or g from being arguments of probability distributions. For example, it is

perfectly meaningful to write P (f jd) = P (djf)P (f)=P (d). In this way new data

can update our estimation of what distribution generated that data.

� Let hx;y be the x-conditioned probability distribution over values y which is

produced by our learning algorithm in response to d. Sometimes our algorithm's

\output" is a quantity based on h (e.g., our algorithm might produce a decision

of some sort based on h), and sometimes h itself is the output of our algorithm.

P (hjd) is the rule for how hypotheses are produced from training sets and is

known as a \generalizer." Examples are back-propagation applied to neural nets

and memory-based (i.e., nearest neighbor) reasoners.

If our algorithm's output is a guessed function from X to Y (rather than a

guessed distribution), then we can view that output as an h where hx;y is of

the form �(y; �(x)) for some function �(:) parametrized by d (�(:; :) being the

Kronecker delta function). Such an h is \single valued." As examples, schemes

like nearest-neighbor classi�ers, and \Bayes-optimal" classi�ers are deterministic

and produce single-valued h. This should be contrasted with schemes like softmax

applied to neural nets, in which the net gives a mapping from X to a distribution

over Y , rather than from X to Y . (See Appendix 2 in [10].) If a generalizer

produces a single-valued h that goes through all the elements of d, that generalizer

is said to \reproduce" d.

� To simplify the exposition, unless explicitly stated otherwise, it will be

assumed in this paper that our algorithm produces single-valued h's. (However,

it is not necessarily assumed that the algorithm is deterministic.) It is similarly

assumed that any f is of the form �(y; �(x)) for some single-valued function �(x)

from X to Y . (Or equivalently, it is assumed that P (f) equals zero for any other

f .) Note that due to the form of P (djf), this assumption is equivalent to requiring

that the training set is generated without any noise. These two assumptions mean

that, as restricted in this paper, the EBF is not capable of addressing problems

where the \target" is a (non-delta function) distribution, and you wish to guess

that target, so h, too, is a distribution. It is straightforward to use the EBF

when none of these assumptions hold [12]. However doing so introduces extra

mathematics which obscures the underlying issues.

To simplify notation, without loss of generality, from now on I will use the

symbols \h" and \f" to refer to single-valued functions (i.e., I will rewrite �(x)

as h(x), and �(x)as f(x)). It will be convenient to write P (dY jdX; f) as �(d � f),

of f . For the views of conventional statistics on this issue, see also Titterington[5] and, in par-

ticular, the Dawid references therein concerning the \predictive" paradigm and the \diagnostic"

paradigm.

7

i.e., �(d � f) = 1 if d lies on f , 0 otherwise. The notation is motivated by viewing

f as a set of X{Y pairs, just like d. (Note though that repeats are allowed in d

but not in f . So �(d � f) can equal 1 even if the set d is not, formally speaking,

contained in the set f .)

� One crucial stipulation|again, one that is adhered to in all if the conven-

tional supevised learning frameworks|is that the guess the learning algorithm

makes depends only on d: This means that P (hjf; d) = P (hjd); if d is held �xed

but f changes, the learning algorithm behaves the same. (Note that the learning

algorithm can be based on assumptions concerning f . But those are embodied

in P (hjd), and do not change if f changes.) An immediate corollary is that

P (f jh; d) = P (f jd). Note the symmetry between h and f .

� In this paper only algorithms that work exclusively with full input-output

(i-o) pairs are considered. As an alternative, one could have an algorithm that

can try to learn even if some of the data is unlabeled or label-only (i.e., if we have

a dX(i) without a corresponding dY (i) or vice versa). For such cases, one must

introduce a new random variable that speci�es which of the elements of the data

set consist of a full i-o pair, just an input, or just an output.3

� Now de�ne a real-world random variable C which represents the \loss" (or

what in some circumstances is called \cost" or \utility" or \value") associated

with a particular f and h. Intuitively, C represents the real-world implications

of a particular use of a learning algorithm. Formally, its meaning is set by the

distribution P (cjh; f; d). That distribution re
ects how \test sets" are generated

from f (and in particular whether it is in the same manner that training sets are

generated), how big test sets are, how h is mapped (stochastically or otherwise)

to a \decision" or an \action," how such a decision is combined with a test set

to generate a real-world loss, etc. For current purposes, all of these kinds of

details are irrelevant|only the �nal distribution P (cjh; f; d) matters. This is

similar to the fact that the only aspect of the learning algorithm that matters is

the distribution P (hjd). (The way a particular P (hjd) is implemented|through

a gradient descent, stochastic sampling, nearest neighbor rule, or whatever|is

irrelevant as far as an investigation of generalization error is concerned.)

The \generalization error function" much discussed in the four frameworks

is the expectation value E(Cjh; f; d). For example, when one is interested in

3Without such a variable, if we did not make our restriction there would be ambiguity

in the notation: P (hjdX) could either mean the distribution over h's when the generalizer

tries to learn from the inputs-only values in dX , or it could mean the average over dY of the

distribution when the generalizer tries to generalize from a set of input-output pairs, fdX ; dY g

(i.e.,
P

dY
P (dY jdX)P (hjdX ; dY)).

8

\average misclassi�cation rate error," one might have E(Cjh; f; d) = E(Cjh; f) =P
x �(x)[1 � �(f(x); h(x))]. This is the average (according to �(x)) number of

times across X that h and f di�er.

In this paper it is assumed that we are interested in misclassi�cation rates, and

that P (cjh; f; d) takes one of two forms. Formally, with C = Er(F;H;D) (so that

P (cjf; h; d) = �[c; Er(f; h; d)]), either C is independent of D and is given by

C = Er(F;H;D) =
P

x �(x)[1� �(F (x); H(x))] (\IID error"),

or C depends on D and is given by

C = Er(F;H;D) =

P
X 62DX

�(x)[1��(F (x);H(x))]P
X 62DX

�(x)
(\o�-training-set error").

Since C = Er(F;H;D), we can write E(Cjf; h; d) = E(CjF = f;H = h;D =

d) = Er(f; h; d), and in general P (c obeys propertyjstuff) = P (f; h; d such that

Er(f; h; d) obeys propertyj

stuff). Er(f; h; d) is called the \error function." Note that for any general-

izer that reproduces the training set the o�-training-set C is simply the IID C,

renormalized so that the maximal value (over all f and h such that both P (f jd)

and P (hjd) are nonzero) is always 1.

One should not confuse the error function with the \error surface" found in

techniques like backpropagation. In the standard Bayesian formulation of back-

propagation,[1, 10] the error surface is (the log of) P (wjd), where w is the weight

vector parametrizing f . So, for example, the term in that error surface that equals

the squared error on the training set simply re
ects the assumption that P (djf)

is created with Gaussian noise. That squared error need have nothing to do with

Er(f; h; d), even if Er(f; h; d) is quadratic in (f � h) (unlike the misclassi�cation

rate error functions analyzed in this paper).

� Although this paper restricts itself to the noise-free scenario, it is worth

brie
y pointing out some of the subtleties involved with noise. Usually the best

way to allow for noise is to have f be a non-delta-function distribution over Y .

However, it is common to instead adopt a \function + noise" scenario. In this

scenario, f is still a single-valued function, but now P (djf) re
ects the process of

adding noise to f to create d (i.e., P (djf) can be nonzero even if d does not lie

on f). If one uses this scenario, care should be exercised in the choice of the error

function. In particular, often we are interested in whether h agrees with a sample

of f where that sample is created with the noise process. (This is usually the case

when we measure performance with a \test set," for example.) In general, this

di�ers from whether h agrees with a noise-free sample of f , and the de�nitions

given above for C should be adjusted accordingly.

� All that is necessary for the EBF to be an appropriate formalism for a

9

particular problem is that the cost random variable only depends on the random

variables f , h, and/or d. In some scenarios|none of which are considered in

this paper|this is not the case, and it is appropriate to modify the EBF by

adding some other variables to the space (e.g., g, or a hyperparameter). In other

scenarios, although the standard EBF might su�ce, a slight modi�cation is more

appropriate. (For example, if one is investigating the use of cross-validation over

a �xed set of generalizers it makes sense to have one of the random variables in

the EBF be the generalizer one chooses[9].) The underlying feature that unites all

such variations of the EBF is that the space being analyzed includes hypotheses

as well as targets.

� All of Bayesian supervised learning, computational learning theory, and

statistical sampling theory can be cast in terms of the EBF, or slight variants

of it. The converse does not hold. In particular, the \vanilla" versions of such

frameworkscan usually can be de�ned in terms of the following abridged version

of the EBF:

� n and r are the number of elements in the input and output spaces, X and

Y , respectively.

� m is the number of elements in the (ordered) training set d. fdX(i); dY (i)g

is the corresponding set of m input and output values. m0 is the number of

distinct values in dX .

� Outputs h of the learning algorithm are always assumed to be of the form

of a function from X to Y , indicated by h(x 2 X). Any restrictions on h

are imposed by P (f; h; d; c).

� The learning algorithm is given by P (hjd). It is \deterministic" if the same

d always gives the same h.

� \Targets" f are always assumed to be of the form of a function fromX to Y ,

indicated by f(x 2 X). Any restrictions on f are imposed by P (f; h; d; c).

� The \likelihood" is P (djf) = �(d � f)�i�(dX(i)), where \�(d � f)" equals 1

if d lies completely on f , 0 otherwise, and �(x) is the \sampling distribution."

� The \posterior" is P (f jd). In this paper, probability is not restricted to

mean \degree of personal belief," as some conventional Bayesians de�ne

it. Accordingly, it is not true that the researcher automatically knows

P (f jd)[15].

10

� P (hjf; d) = P (hjd), P (f jh; d) = P (f jd), and therefore

P (h; f jd) = P (hjd)P (f jd).

� The cost c associated with a particular h and f is either given by Er(f; h; d) =P
x �(x)[1� �(f(x); h(x))] (\IID error function"), or by the \o�-training-set

error" function, Er(h; f; d) =
P

x62dX �(x)[1� �(f(x); h(x))]=
P

x62dX �(x).

� The empirical misclassi�cation rate s �
Pm

i=1f1� �[h(dX(i)); dY (i)]g=m.

Figure 1. Synoposis of the EBF.

In what follows, it is implicitly understood that assumptions like the exact

absence of noise are replaced by the presence of in�nitesimal noise. More precisely,

it is implicit that no distributions ever equal zero exactly, although they might

be arbitrarily close to zero. This is to ensure that we will never divide by zero in

evaluating conditional probabilities.

3 The No-Free-Lunch Theorems

3.1 Presentation of the theorems

The theorems presented in this section bound how well a learning algorithm can

be assured of performing in the absence of assumptions concerning the real world.

For the sake of space, no proofs that appear in other papers are presented. The

interested reader is referred[9, 12].

Theorem 1: E(Cjd) can be written as a (non-Euclidean) inner product be-

tween the distributions P (hjd) and P (f jd): E(Cjd) =
P

h;f Er(h; f; d)P (hjd)P (f jd).

(Similar results hold for E(Cjm), etc.)

Theorem 1 says that how well you do is determined by how \aligned" your

learning algorithm P (hjd) is with the actual posterior, P (f jd). This allows one to

ask questions like \for what set of posteriors is algorithmG1 better than algorithm

G2?" It also means that, unless one can somehow prove (!), from �rst principles,

that P (f jd) has a certain form, one cannot prove that a particular P (hjd) will

be aligned with P (f jd) and, therefore, one cannot prove anything concerning how

well that learning algorithm generalizes.

11

This impossibility of �rst-principles proofs can be formalized in a number of

ways. One of them is as follows:

Theorem 2: Consider the o�-training-set error function. Let \Ei(:)" indicate

an expectation value evaluated using learning algorithm i. Then for any two

learning algorithms P1(hjd) and P2(hjd), independent of the sampling distribution,

� Uniformly averaged over all f , E1(Cjf;m)� E2(Cjf;m) = 0;

� Uniformly averaged over all f , for any training set d,

E1(Cjf; d)� E2(Cjf; d) = 0;

� Uniformly averaged over all P (f), E1(Cjm)� E2(Cjm) = 0;

� Uniformly averaged over all P (f), for any training set d, E1(Cjd)�E2(Cjd)

= 0.

In other words, by any of the measures E(Cjd), E(Cjm), E(Cjf; d), or

E(Cjf;m) (all generically known as \risks"), all algorithms are equivalent, on

average.4 Or to put it another way, for any two learning algorithms, there are just

as many situations (appropriately weighted) in which algorithm one is superior to

algorithm two as vice versa, according to any of the measures of \superiority" in

Theorem 2.

4Note that one could argue that 2.i, for example, is misleading; di�erent f 's will have di�erent

probabilities in the real world, so a
at average over all f 's is in some sense inappropriate. To

correct this \misleading" nature of 2.i we are lead to consider averaging over all f according

to a P (f) which need not be uniform. Such an average equals E(Cjm). Now one can always

construct a P (f) to argue in favor of any particular learning algorithm. However, in almost all

real-world supervised learning, we do not know P (f). So we are led to ask if there is a P (f)

such that E(Cjm) is lower for algorithm one, and/or if there is also a P (f) such that according

to E(Cjm) algorithm two is superior. But this question has already been answered|in the

a�rmative|by 2.iii. In fact, given that we do not know P (f), the obvious thing to do, if one

wishes to compare two algorithms with the measure E(Cjm), is compare their averages over

all P (f)|which 2.iii tells us makes all learning algorithms just as good as one another. Now

one could try to \jump a level" yet again, and argue that some P (f) are \more likely" than

others, so one should not perform a
at average over all P (f), etc. But the math responds the

same way as it did to the objection to 2.i|in response to this new objection, one constructs

new questions concerning probability distributions across the set of P (f)'s, questions whose

answers again state that all algorithms perform the same, in the absence of information about

the problem suggesting otherwise.

12

3.2 Examples

As an example, an algorithm that uses cross validation to choose amongst a pre-

�xed set of learning algorithms does no better on average than one that does not.

(However, since cross validation can only be viewed as a P (hjd) if it is used to

choose amongst a pre-�xed set of learning algorithms, Theorem 2 says nothing

about cross validation \in general," when the set of generalizers is not pre-�xed.

As another example of the no-free-lunch theorems, assume you are a Bayesian,

and calculate the Bayes-optimal guess assuming a particular P (f). (For example,

you use the P (hjd) that minimizes the data-conditioned risk E(Cjd), given your

assumed P (f).) You now compare your guess to that made by someone who uses

a non-Bayesian method. Then 2.iv means (loosely speaking) that there are as

many actual priors in which the other person has a lower data-conditioned risk

as there are for which your risk is lower. Another set of examples is provided by

all the heuristics that people have come up with for supervised learning: avoid

\over-�tting," prefer \simpler" to more \complex" models, etc. Theorem 2 says

that all such heuristics fail as often as they succeed.

Another example of Theorem 2 is given by the case where our learning al-

gorithm is deterministic, and we have a particular training set d so the risk of

interest is E(Cjd). The empirical misclassi�cation rate s is �xed by d, since

our algorithm takes d and gives h, which together with d gives s. Accordingly,

E(Cjs; d) = E(Cjd). Now assume that for our d, s happens to be very small (i.e.,

h and f agree almost always across the elements dX). Assume further that our

learning algorithm has a very low VC dimension. Since s is low, we might hope

that that low VC dimension confers some assurance that our generalization error

will be low. (This is one common way people try to interpret the VC theorems.)

However, according to 2.iv, low s and low VC dimension provide no such assur-

ances concerning o�-training-set error. Either given d or (equivalently) given both

d and s, no advantage is conferred as far as o�-training-set behavior is concerned

if s is low and one's algorithm happens to have low VC dimension.5

So all learning algorithms are the same in that: (1) by several de�nitions of

\average," all algorithms have the same average o�-training-set misclassi�cation

5This result is reconciled with the usual VC theorems in the VC section of [11]. As an aside,

it should be mentioned that the only reason this result might appear to be at odds with the VC

theorems is because the usual statements of those theorems are guilty of sin number one from the

introduction|the conditioning event is not speci�ed. Accordingly, it is not immediately clear

to the �rst-time reader of the VC theorems that they do not concern any of the conditioning

events discussed in Theorem 2. (It should also be noted that the VC theorems concern IID

error, not o�-training-set error.)

13

risk and, therefore, (2) no learning algorithm can have lower risk than another

one for all f , for all P (f), for all f and d, or for all P (f) and d. However, learning

algorithms can di�er in that: (1) for particular (nonuniform) P (f), di�erent algo-

rithms have di�erent data-conditioned risk (and similarly for other kinds of risk),

and (2) for some algorithms there is a distribution-conditioning quantity (e.g., f)

for which that algorithm is optimal (i.e., for which that algorithm beats all other

algorithms), but some algorithms are not optimal for any value of such a quantity;

and, more generally, (3) for some pairs of algorithms the no-free-lunch theorems

are met by having comparitively many cases in which algorithm A is just slightly

worse than algorithm B, and a few cases in which algorithm A beats algorithm B

by a lot.

It is interesting to speculate about the possible implications of point (3) for

cross validation. Consider two algorithms � and �. � is identical to algorithm

A, and � works by using cross validation to choose between A and B. � and �

must have the same expected error, on average. However, the following might

be the case for many choices of A, B, �(x), etc.: For most situations (i.e., most

f or P (f), depending on which of Theorem 2's averages is being examined) A

and B have approximately the same expected o�-training-set error, but � usually

chooses the worse of the two, so in such situations the expected cost of � is

(slighly) worse than that of �. In those comparitively few situations where A and

B have signi�cantly di�erent expected o�-training-set error, � might correctly

choose between them, so the expected cost of � is signi�cantly better than that of

� for such situations. In other words, it might be a common case that when asked

to choose between two generalizers in a situation where they have comparable

expected cost, cross validation usually fails, but in those situations where the

generalizers have signi�cantly di�erent costs, cross validation successfully chooses

the better of the two. In such a case, cross validation still has the same average

o�-training-set behavior as any other algorithm. And there are actually more

situations in which it fails than in which it succeeds. However, in such a case,

cross validation has desirable minimax behavior. (It's important to note though

that one can explicitly construct cases where cross validation does not have this

desirable minimax behavior. See Section 8 of [11].)

3.3 Variants of Theorem 2

All of this applies to more than just o�-training-set error. In general IID error can

be expressed as a linear combination of o�-training-set error plus on-training set

error, where the combination coe�cients depend only on dX and �(x 2 dX). So

14

generically, if two algorithms have the same on-training-set behavior (e.g., they

reproduce d exactly), the no-free-lunch theorems apply to their IID errors as well

as their o�-training-set errors.

In addition, there are a number of variants of Theorem 2, for example, deal-

ing with noisy training sets, other conditional distributions (like E(Cjs; fother

quantitiesg)), etc. For the sake of space they are not detailed here; the purpose

of this section is only to present a sample of the no-free-lunch theorems, su�cient

to provide a context for scrutinizing the results of the four frameworks.

3.4 Implications of Theorem 2 for the use of \test sets"

Theorem 2 also has implications for the (very common) use of a single test set

to estimate c. Consider splitting d into two parts, d1 and d2. Training is done

on d1, and d2 is a \test set" used to measure the resultant performance. (Note

that since there can be duplicates in d, d1 and d2 might share input-output pairs.)

The simplest situation to set up is where our error function runs over both (d1)X

and (d2)X|in this simple-minded version of things, no attention is being paid to

o�-training-set considerations, and the no-free-lunch theorems do not apply.

As an alternative, consider the o�-training-set Er(f; h; d), where \o�-training-

set" means o� all of d. Now the no-free-lunch theorems apply; they tell us that

behavior on d, which includes behavior on d2, can tell us nothing about c, on

average. (If this were not the case, behavior on d could be used to successfuly

choose between competing algorithms.) The implication is that as far as o�-d be-

havior is concerned, the most common procedure used for evaluating algorithms|

examining their behavior on test sets|fails as often as it succeeds, on average.

(Although, in general the minimax properties of this procedure might not be so

poor|see the discussion above on cross validation's minimax behavior.)

On the other hand, assume that once d1 is �xed d2 is set to be the remaining

pairs in d that are not also found in d1. One might view such a d2 as \o�-training-

set" in the sense of having no overlap with d1. (Which de�nition of o�-training-set

is appropriate depends on which of the reasons listed in the introduction for being

interested in o�-training-set behavior applies.) If we adopt this de�nition, then it

makes sense to rede�ne the error function to be the o�-training-set error function

for this training set d1 (rather than for all of d). With this rede�nition the error

function runs over (d2)X as well as X � dX , and the no-free-lunch theorems do

not apply; behavior on d2 now can tell us something about the likely c value.

Indeed, for this scenario we might have d2 be an IID sample of a process which,

if in�nitely repeated, gives our error function. We could then apply the usual

15

variants of the central limit theorem to derive a con�dence interval bounding

the likely di�erence between empirical error on d2 and the value of c. As with all

con�dence intervals though, this one comes with the major caveat that it does not

directly give us what we want, which in this case is P (error on d2). See Sections 8

and 10 of [11]. (These points concerning test sets grew out of a conversation with

Manny Knill.)

3.5 Intuition behind Theorem 2

The results presented above do not mean that the technique of cross validation

does not work, or that the technique of using test sets to estimate error o� of

test sets does not work, or the like. Rather they mean that one can not formally

justify these techniques (as far as expected o�-training set error is concerned)

without making assumptions. More practically, the results mean that if you are

interested in o�-training-set behavior, then using such a technique amounts to an

assumption that P (f) is not \typical," as measured by a uniform distribution over

P (f) (or that f is not typical as measured by a uniform distribution over f , or

what have you.) As with all other assumptions, the validity of this one will vary

from case to case.

Intuitively, it is not hard to see why an assumption must be implicit in tech-

niques like cross validation. Consider the case where P (f) is �xed and uniform

over all f , and we are concerned with E(Cjd) for some particular d. Since P (f)

is uniform over all f , all f agreeing with d are equally probable. Accordingly,

all possible patterns of f values outside of the training set are equally probable;

the o�-training-set world is essentially random. This means that building into a

learning algorithm a preference for some particular outside-the-training-set pat-

tern will not gain you anything; all algorithms are equal as far as o�-training-set

behavior is concerned when P (f) is uniform.

To complete the intuitive justi�cation for Theorem 2, note that since X and Y

are �nite, so is the set of all f 's, and therefore P (f) is a �nite-dimensional real-

valued vector living on the unit simplex. Accordingly, uniformly averaging all

P (f) results in a vector on that simplex all of whose components are equal|the

uniform P (f). So uniformly averaging all P (f) (or uniformly averaging all f) is

essentially equivalent to having a uniform P (f). (The actual proof of Theorem 2

is a bit more complicated than this because we're not interested directly in the

average of P (f) but rather in the average of a distribution conditioned on P (f)

together with some quantity statistically coupled to P (f). But the basic idea is

the same.)

16

When considering things from the perspective of this particular argument, one

should bear in mind that for Y = f0; 1g and n large, uniform P (f) (or equivalently

a uniform prior over P (f)) means you are unlikely to �nd an f for which the

proportion of all x such that f(x) = 1 di�ers much from .5. One might wish to

instead have something like a uniform probability over the proportion of 1's in f

(rather than over f 's directly). For such a case, the f of all 1's is more probable

than any particular f having both 1's and 0's in its outputs. A direct result is that

if the training set has all its output values equal to 1, then the posterior favors the

f having all 1's o� the training set over the one having all 0's o� the training set.

(More generally, this is a situation that favors having more 1's o� the training set

than 0's.) In other words, in such a case we would have an automatic coupling

between on- and o�-training-set behavior. (Note though that Theorem 2 means

that there also cases in which we have an automatic \anti-coupling" between on-

and o�-training-set behavior.) Similar arguments follow from the fact that for

any �xed h, you are unlikely to �nd an f for which the number of x such that

f(x) 6= h(x) di�ers much from .5.

Another intuitive justi�cation for the no-free-lunch theorems is based on view-

ing supervised learning \in reverse." Conventionally one views supervised learning

as a process whereby P (f) is sampled to set f , which is then sampled to get d,

which is then used to get h. Viewed this way, it might seem odd that an h that

agrees with d has no a priori correlation with f o� of d. However, instead view

the process as starting with a d, �tting h to it, and then considering all f going

through those d. From this point of view, there is no reason at all to believe that

h and f agree o� of d.

As a �nal example of intuitive arguments supporting Theorem 2, simply note

that it's very di�cult to see how you could infer anything substantive about the

likely c that accompanies use of a particular learning algorithm, unless you make

an assumption for P (c; f; d). And if you do make an assumption for P (c; f; d), but

it only concerns on-training set behavior (e.g., a noise-model), it's very di�cult

to see how you could infer anything substantive about the likely o�-training-set c

that accompanies use of a particular learning algorithm.

As these intuitive arguments suggest, there are many other aspects of o�-

training-set error which, although not actually no-free-lunch theorems, can nonethe-

less be surprising to those used to IID error. An example is the proof in Appendix 1

that in certain situations the expected o�-training-set error grows as the size of

the training set increases, even if one uses the best possible learning algorithm,

the Bayes-optimal learning algorithm (i.e., the learning algorithm that minimizes

E(Cjd)|see the section in [11] on the Bayesian framework). In other words,

17

sometimes the more data you have, the less you know about the o�-training-set

behavior of f , on average.

3.6 Error functions other than the misclassi�cation rate

Finally, it should be pointed out that things are a bit messier when error functions

other than the misclassi�cation rate are considered. (In that the vanilla versions

of the four frameworks do not consider such error functions, such error functions

are not considered in this paper.) In particular, if the error function induces

a geometrical structure over Y , then we can have a priori distinctions between

learning algorithms.

An example is the case of quadratic error functions. For such functions, ev-

erything else being equal, an algorithm whose guessed Y values lie away from

the boundaries of Y is to be preferred over an algorithm that guesses near the

boundaries.6 In addition, for such an error function, guessing an h that equals

the Y -average of a stochastic algorithm's guess can never increase expected error

beyond that of the original algorithm. Phrased di�erently, for a quadratic error

function, given a series of experiments and a set of deterministic generalizers Gi, it

is always preferable to use the average generalizer G0 �
P

iGi=
P

i 1 for all such ex-

periments rather than randomly to choose a new member of the Gi to use for each

experiment. Intuitively, this is because such an average reduces variance without

changing bias | see [12]. (Note though that this in no way implies that using G0

for all the experiments is better than using any particular single G 2 fGig for all

the experiments.)

Though important, such geometry-based distinctions do not say much about

generalization once their strictures are met. In essence they serve as a zero-point

or a baseline to generalization.

3.7 Summary

� Theorem 1 tell us that E(Cjd) is given by an inner product between the

generalizer and the posterior.

� Theorem 2 tells us that if one is interested in o�-training-set error, then any

6As an aside, note that in certain circumstances, this kind of e�ect will mean that, everything

else being equal, one should prefer an h that stays away from the borders of Y , and therefore

one should prefer an h that is relatively smooth. This is an example of how the choice of error

function can a�ect how one regularizes (i.e., can a�ect the \bias" one imposes that competes

with �tting the training set in determining h). This issue is addressed in Section 5 of [11].

18

pair of generalizers perform the same on average, where performance is measured

by one of the distributions E(Cjd); E(Cjf; d); E(Cjm); E(Cjf;m); or E(Cjs; d),

and the averaging is over all f or all P (f) as is appropriate.

� Some of the implications of Theorem 2 are that as far as o�-training-set

behavior is concerned, even techniques like cross validation and the use of test sets

to estimate generalization error are unjusti�able unless one makes assumptions.

They fail in as many scenarios as they succeed, loosely speaking.

� Appendix 1 of [11] demonstrates that even for the Bayes-optimal algorithm,

E(Cjm) can rise with m for o�-training-set error. So can E(Cjf;m).

� These results must be modi�ed when there is a natural metric structure in

the error function, since that structure allows for the a priori superiority of one

algorithm over another.

4 Acknowledgments

This work was supported by NASA Ames Research Center.

References

[1] W. Buntine and A. Weigend. Bayesian back-propagation. Complex Systems,

5:603{643, 1991.

[2] T. Dietterich. Machine learning. Ann. Rev. Comp. Sci, 4:255{306, 1990.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi�cation (2nd ed.).

Wiley and Sons, 2000.

[4] A. Blumer et al. Occam's razor. Info. Proc. Lett., 24:377{380, 1987.

[5] Titterington et al. Statistical Analysis of Finite Mixture Distributions. Wiley

and sons, 1985.

[6] R. Neal. Priors for in�nite networks. Department of Computer Science,

University of Toronto, Technical Report, 1994.

[7] S.M. Weiss and C. A. Kulikowski. Computer Systems that Learn. Morgan

Kau�man, 1991.

19

[8] D. Wolpert. Filter likelihoods and exhaustive learning. In Computational

Learning Theory and Natural Learning Systems Volume II: Natural Learning

Systems. MIT Press, 1994.

[9] D. H. Wolpert. On the connection between in-sample testing and generaliza-

tion error. Complex Systems, 6:47{94, 1992.

[10] D. H. Wolpert. Bayesian backpropagation over i-o functions rather than

weights. In S. Hanson et al., editor, Neural Information Processing Systems

6. Morgan-Kau�man, San Mateo, CA, 1994.

[11] D. H. Wolpert. The relationship between pac, the statistical physics frame-

work, the bayesian framework, and the vc framework. In The Mathematics

of Generalization [13].

[12] D. H. Wolpert. The lack of a prior distinctions between learning algorithms

and the existence of a priori distinctions between learning algorithms. Neural

Computation, 8:1341{1390,1391{1421, 1996.

[13] D. H. Wolpert, editor. The Mathematics of Generalization. Addison-Wesley,

New York, 1996.

[14] D. H. Wolpert. On bias plus variance. Neural Computation, 9:1211{1244,

1996.

[15] D. H. Wolpert. Reconciling bayesian and non-bayesian analysis. InMaximum

Entropy and Bayesian Methods 1993. Kluwer Academic Press, 1996.

20

